Specific deletion of NaV1.1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome.

نویسندگان

  • Christine S Cheah
  • Frank H Yu
  • Ruth E Westenbroek
  • Franck K Kalume
  • John C Oakley
  • Gregory B Potter
  • John L Rubenstein
  • William A Catterall
چکیده

Heterozygous loss-of-function mutations in the brain sodium channel Na(V)1.1 cause Dravet syndrome (DS), a pharmacoresistant infantile-onset epilepsy syndrome with comorbidities of cognitive impairment and premature death. Previous studies using a mouse model of DS revealed reduced sodium currents and impaired excitability in GABAergic interneurons in the hippocampus, leading to the hypothesis that impaired excitability of GABAergic inhibitory neurons is the cause of epilepsy and premature death in DS. However, other classes of GABAergic interneurons are less impaired, so the direct cause of hyperexcitability, epilepsy, and premature death has remained unresolved. We generated a floxed Scn1a mouse line and used the Cre-Lox method driven by an enhancer from the Dlx1,2 locus for conditional deletion of Scn1a in forebrain GABAergic neurons. Immunocytochemical studies demonstrated selective loss of Na(V)1.1 channels in GABAergic interneurons in cerebral cortex and hippocampus. Mice with this deletion died prematurely following generalized tonic-clonic seizures, and they were equally susceptible to thermal induction of seizures as mice with global deletion of Scn1a. Evidently, loss of Na(V)1.1 channels in forebrain GABAergic neurons is both necessary and sufficient to cause epilepsy and premature death in DS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissecting the phenotypes of Dravet syndrome by gene deletion.

Neurological and psychiatric syndromes often have multiple disease traits, yet it is unknown how such multi-faceted deficits arise from single mutations. Haploinsufficiency of the voltage-gated sodium channel Nav1.1 causes Dravet syndrome, an intractable childhood-onset epilepsy with hyperactivity, cognitive deficit, autistic-like behaviours, and premature death. Deletion of Nav1.1 channels sel...

متن کامل

Nav1.1 haploinsufficiency in excitatory neurons ameliorates seizure-associated sudden death in a mouse model of Dravet syndrome

Dravet syndrome is a severe epileptic encephalopathy mainly caused by heterozygous mutations in the SCN1A gene encoding a voltage-gated sodium channel Nav1.1. We previously reported dense localization of Nav1.1 in parvalbumin (PV)-positive inhibitory interneurons in mice and abnormal firing of those neurons in Nav1.1-deficient mice. In the present study, we investigated the physiologic conseque...

متن کامل

Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome.

Haploinsufficiency of the voltage-gated sodium channel NaV1.1 causes Dravet syndrome, an intractable developmental epilepsy syndrome with seizure onset in the first year of life. Specific heterozygous deletion of NaV1.1 in forebrain GABAergic-inhibitory neurons is sufficient to cause all the manifestations of Dravet syndrome in mice, but the physiological roles of specific subtypes of GABAergic...

متن کامل

Cognitive and social impairment in mouse models mirrors dravet syndrome.

Commentary Dravet syndrome is an infant-onset epileptic encephalopathy characterized by generalized clonic, tonic–clonic, or hemi-clonic seizures. Patients subsequently develop other types of seizures, including myoclonic, absence, or partial seizures. Seizures are often refractory to conventional antiepileptic drugs and lack ofadequate seizure control is correlated with poor outcomes. Developm...

متن کامل

Ion channels: genetics and as a targets for antiepileptic drugs

Dravet syndrome is caused by mutations of the SCN1A gene that encodes voltage-gated sodium channel alpha-1 subunit. SCN1A-knock-in mouse with a disease-relevant nonsense mutation that we generated reproduced the disease phenotypes. Both homozygous and heterozygous knock-in mice developed epileptic seizures within the fi rst postnatal month. Our immunohistochemical studies showed that in wild-ty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 36  شماره 

صفحات  -

تاریخ انتشار 2012